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Abstract

This paper describes our system submission
to the SemEval 2018 Task 10 on Capturing
Discriminative Attributes. Given two con-
cepts and an attribute, the task is to determine
whether the attribute is semantically related to
one concept and not the other. In this work
we assume that discriminative attributes can
be detected by discovering the association (or
lack of association) between a pair of words.
The hypothesis we test in this contribution is
whether the semantic difference between two
pairs of concepts can be treated in terms of
measuring the distance between words in a
vector space, or can simply be obtained as a
by-product of word co-occurrence counts.

1 Introduction

Equipped with their cognitive skills, encyclope-
dic knowledge and linguistic competence, humans
generally can identify the lexical association or se-
mantic relation between two words or concepts
with relative ease. However, building a com-
putational model for identifying fine-grained se-
mantic relations (such as synonymy, antonymy,
hyponymy, or hypernymy, meronymy, holonymy,
metonymy, containment or causality) or even de-
tecting binary relatedness has proven to be a chal-
lenging task.

Efforts to model semantic representation com-
putationally are generally classified into statistical
and knowledge-driven semantics. This classifica-
tion depends on whether the assumption is that hu-
man knowledge is encapsulated in language man-

ifestation or that explicit manual encoding of this
knowledge is needed. The statistical approach to
the encoding of semantic relations is referred to
as “distributional semantics” or “distributed word
representations” (Speer et al., 2017), and its the-
oretical appeal stems from the fact that it gives
practical application to the Firthian dictum “You
shall know a word by the company it keeps” (Firth,
1957) which has become commonsense wisdom
in lexical semantics. Features of the statistical
model are extracted from unstructured data, such
as words embeddings, n-gram counts, or directly
from raw data.

The basic idea with word embeddings is to
formulate semantic relations in arithmetic fash-
ion by creating a vector space in which words
with similar contextual embeddings have closer
vectors distance (Hinton et al., 1986; Rumelhart
et al., 1986; Elman, 1990; Bengio et al., 2003;
Kann and Schtze, 2008; Mikolov et al., 2013c).
The public availability of word embedding train-
ing programs such as word2vec (Mikolov et al.,
2013a) and GloVe (Pennington et al., 2014) al-
lowed researchers to create models with different
parameters and dimensionality sizes for different
purposes including capturing semantic relations
(Gladkova et al., 2016; Attia et al., 2016).

The Google n-gram corpus (Brants and Franz,
2006) is a collection of English word n-grams and
their observed counts generated from 1 trillion
words of texts from web pages. This corpus has
been used in many different applications including
estimating word-relatedness (Islam et al., 2012),
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comparison of semantic similarity (Joubarne and
Inkpen, 2011), information retrieval (Tandon and
De Melo, 2010; Klein and Nelson, 2009), lexical
disambiguation (Bergsma et al., 2009), improving
general purpose NLP classifiers (Bergsma et al.,
2010), and improving parsing performance (Pitler
et al., 2010).

Knowledge-driven approaches to the detection
of semantic relations rely on manually constructed
lexical and encyclopedic resources, such as Con-
ceptNet (Speer et al., 2017), ImageNet (Rus-
sakovsky et al., 2015), WordNet (Miller and Fell-
baum, 1998), Wiktionary, Open Mind Common
Sense (Singh et al., 2002) and DBpedia (Mendes
et al., 2012).

In this work we follow a statistical based ap-
proach and show the strengths and weakness of the
distributional semantics of the word vectors and n-
gram frequency counts in capturing the different
types of discriminative attributes.

2 Task and Data Description

The goal of the shared task on Capturing Dis-
criminative Attributes (Krebs et al., 2018) is to
detect semantic difference between pairs of con-
cepts, or in other words, determine whether a se-
mantic property differentiates between two possi-
bly related concepts. For example both ‘bear’ and
‘goat’ are animals, but only a ‘bear’ has ‘claws’.
Therefore ‘claws’ is considered as a discrimina-
tive feature.

The shared task data is formatted in triples
that represent a ternary relation between two con-
cepts (Word1, Word2) on one hand and an attribute
(Word3) on the other. Word3 is considered as a
discriminative attribute if, and only if, it charac-
terizes Word1 but not Word2. For example, in the
triple (sailboat,yacht,mast), ‘mast’ is discrimina-
tive as it is found in Word1, ‘sailboat’, but not in
Word2. By contrast, in the triple (goose,duck,flies)
the event ‘flies’ is not discriminative as it char-
acterizes both entities. Similarly in the triple
(pickle,lemon,round), ‘round’ is not a discrimina-
tive feature, as it characterizes Word2, not Word1.

The size of the shared task data is described in
Table 1. It is to be noted that there is no intersec-
tion between the discriminative attributes in any of
the datasets. We think the purpose is to make sure
that the participating systems are able to learn how
to estimate the relations, regardless of the lexical
items involved.

Dataset # of triples # of attributes
Training 17,547 1,292
Validation 2,722 576
Test 2,340 577

Table 1: Sizes of the shared task datasets.

3 System Description

In our system we use a deep neural network for the
binary classification of discriminative attributes.
The basic idea with deep learning is to use hid-
den layers of neural nets to automatically capture
the underlying factors that lead from the input to
the output, eliminating the need for feature engi-
neering.

The system is trained on features extracted from
two main publicly available resources that fall
within the paradigm of unstructured data as no
manual lexical or encyclopedic knowledge is en-
coded. The two resources are the Google n-gram
counts and the Google News Word2Vec.
Google n-gram counts. We use the Google
5-gram counts as provided by Google Books
ngrams1 (Michel et al., 2011; Lin et al., 2012).
Google News Word2Vec. This is a publicly
available pre-trained word vector2, built with the
word2vec architecture (Mikolov et al., 2013b)
from a news corpus of 100B words (3M vocab-
ulary entries) with 300 dimensions, negative sam-
pling, using continuous bag of words and window
size of 5.

3.1 Features Used

We describe the features used to train our DNN bi-
nary classifier to detect discriminative attributes.
In this section we use the abbreviations W1, W2,
and W3 for Word1, Word2, and Word3, respec-
tively.

We use pre-trained word vectors in order to ob-
tain similarity scores between words. This leads
to the following features.

• distW1W3: Cosine distance between W1 and
W3

• distW2W3: Cosine distance between W2 and
W3

• cosDiff : Difference between distW1W3 and
distW2W3

1https://books.google.com/ngrams/info
2https://goo.gl/tyVGqW
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• similarityCompare: We compute the cosine
similarity between two sets of words using
the Gensim ‘n similarity’ function. So it
gives a single number for comparing the sim-
ilarity between W1 and W3, and W2 and W3.

In order to capture all morphological variations of
the words, we use word lemmas and then expand
to all variants that share the same lemma.

• lemmaDistW1W3Ex: The average cosine dis-
tance between W1 and all lemma expansions
of W3

• lemmaDistW2W3Ex: The average cosine dis-
tance between W2 and all lemma expansions
of W3

We use to Google 5-gram counts to obtain the
following features.

• cntW1W3: counts of W1 and W3 co-occurring

• cntW2W3: counts of W2 and W3 co-occurring

• cntW1W3Ex: counts of W1 and the lemma ex-
pansions of W3 co-occurring

• cntW2W3Ex: counts of W2 and the lemma ex-
pansions of W3 co-occurring

3.2 Machine Learning Models
We use a deep neural network model for the binary
classification of attributes as either True or False
(or discriminative or non-discriminative) based on
the set of features described above.

We use a simple and straight-forward architec-
ture consisting of 5 feed-forward fully-connected
(or dense) layers with single dropout layer with a
rate of 0.3. The network is narrow on the top and
wide on the bottom. The function of the dropout
layer (Hinton et al., 2012) is to mitigate overfit-
ting and make sure that our model learns signifi-
cant representations by randomly omitting a cer-
tain percentage of the neurons in the hidden layer
for each presentation of the samples during train-
ing. This encourages each neuron to depend less
on other neurons and to try to learn generaliza-
tions. Table 2 shows the layer configuration of the
model.

4 Experiments and Results

We test our system on various combination of the
features mentioned in subsection 3.1. We assume

Layer type Output Shape Param #
Dense1 (None, 12) 132
Dropout1 (None, 12) 0
Dense2 (None, 12) 156
Dense3 (None, 100) 1300
Dense4 (None, 200) 20200
Dense5 (None, 1) 201

Table 2: Neural Network Layout.

the baseline is 50% as this is what a random sys-
tem would generate given that the validation set
has an almost equal number of True’s and False’s.
Table 3 shows the system results on the dev set,
with the last row showing results on the test set
using our best model, “all features”. Surprisingly,
using the cosine distance between pairs of words
gives a low score (56.17%) which is slightly above
the baseline, indicating the ineffectiveness of co-
sine distances in capturing this kind of relation-
ships. Word counts alone were the most impactful
of all the features.

5 Error Analysis

In order to be able to analyze the performance of
the system and identify where it is faring well and
where it is failing, we first manually classify the
relations between concepts and attributes in the
validation set into 8 types.

1. Part-whole. This is when the attribute de-
notes an entity that can be part or whole of
concept1, e.g. tractor, wheels; moose, legs;
cat, eyes; iguana, tongue; condos, rooms.

2. Container-contained. This is when the en-
tity attribute can be located/situated physi-
cally or temporally in concept1, e.g. oven,
kitchen; fort, cannons; mouse, house; priest,
parish; surfboard, water.

3. Made-of. This is when the entity attribute is
a material of which concept1 can be made,
e.g. cart, wood; wire, metal; rum, sugarcane;
scarf, wool; wine, grape; roof, clay.

4. Agent-patient. This is when the attribute is
a topic or theme on which concept1 can act
on, e.g. politician, politics; physiotherapist,
muscles; dermatologist, skin; mammals, milk.

5. HasAttribute. This is when the attribute is
an adjective that can be used to describe con-
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Features Accuracy
baseline 50.00
distW1W3, distW2W3 56.17
distW1W3, distW2W3, lemmaDistW1W3Ex, lemmaDistW2W3Ex 55.79
cosDiff, similarityCompare 59.12
cntW1W3, cntW2W3 65.27
cntW1W3, cntW2W3, cntW1W3Ex, cntW2W3Ex 65.45
all features 66.50
result on the test set 65.17

Table 3: System results with different feature combinations.

class Total % correct %
event 346 12.71 260 75.14
containment 228 8.38 167 73.25
made-of 158 5.80 113 71.52
relates-to 164 6.02 115 70.12
agent-patient 121 4.45 84 69.42
part-whole 524 19.25 361 68.89
hasAttribute 850 31.23 515 60.59
hyper-hypo 331 12.16 196 59.21
Total 2,722 1,811 66.53

Table 4: Discriminative classes sorted by system per-
formance.

cept1, e.g. garlic, white; girl, virgin; alliga-
tor, long; tuna, large; honey, sweet; pumpkin,
round.

6. Hyper-hypo. That is when the attribute is
a hyponym or hypernym of the concept, e.g.
rum, alcohol; orthodontist, profession; steak,
meat; mother, female; lorry, vehicle; laven-
der, plant.

7. Event. That is when the attribute is a verb
that is associated with the concept/entity,
e.g. woman, talk; educator, teaches; knee,
bend; tuna, swims; frog, jumps; shirt, wear;
seabirds, fly; novelist, write.

8. Relates-to. This is when the relationship
cannot stated with any of the aforementioned
types, e.g. bus, passengers; knee, pads; lung,
transplant; widow, death; brother, sister; un-
cle, nephew.

Table 4 shows our manual classification of the
discriminative attributes in the validation set. It is
to be noted that the majority of relations (62.64%)
are of three types: hasAttribute, part-whole and
hyper-hypo.

The types of discriminative features in Ta-
ble 4 are sorted by system performance, high-
lighting strengths and weaknesses of the sys-
tem. The deep learning algorithm assumes that
the attribute is discriminative for concept1 if it
has considerably higher n-gram counts with con-
cept1 than with concept2. In the upper end n-
gram counts shows strength in dealing with events
and container-contained relationships, where co-
occurrence statistics showed to be very help-
ful. The examples below shows frequency counts
that indicate stronger relation between Word1 and
Word2 than between Word2 and Word3. Gold
answers are the numbers (0 or 1) following the
triples.
(shoulder, cheek, carry, 1), cntW1W3: 104620,
cntW2W3: 498
(teacher, pupil, teaches, 1), cntW1W3: 134656,
cntW2W3: 0
(albums, music, picture, 1), cntW1W3: 3937564,
cntW2W3: 374572

It is to be mentioned that in the validation set,
there were 246 (9%) instances where no frequency
counts were found for either concepts.

In the lower end of our system performance
there were the classes of hasAttribute, part-whole
and hyper-hypo. As these classes constitute the
majority of the data, the overall system perfor-
mance is compromised. We make further detailed
analysis of our top losses with hasAttribute and
part-whole.

Analysis of Errors with hasAttribute
Most of the errors in this class can be identified
with one of three reasons.

• N-gram counts are not aware of the qualifi-
cation scope. For example, in the tuple be-
low, ‘large’ has equally high frequency with
‘brick’, not because a brick can be large, but
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they co-occur in phrases like, “large brick
house/ranch”
(garage, brick, large, 1), cntW1W3: 245802,
cntW2W3: 193816

• Contrary to common sense knowledge, data
could prove the association between a con-
cept and attribute that might not be readily
perceived. The example below shows that
“green tomato” is not a rarity. This could in-
dicate an error with manual annotation of the
data.
(zucchini, tomato, green, 1), cntW1W3:
29280, cntW2W3: 179646

• The collocation between the attribute and
concept2 could be higher than with concept1.
(drizzle, rain, light, 1), cntW1W3: 231348,
cntW2W3: 4108548

Analysis of Errors with part-whole
Similarly the errors in this class can be attributed
to one of three causes.

• Disproportionate frequency count, which
could be tied to the disparity in the individual
frequency of the concepts themselves. This
might be solved by taking the n-gram count
as a function of the unigram counts of the
concepts themselves.
(car, taxi, wheels, 0), cntW1W3: 504848,
cntW2W3: 2734

• There could be an association of different
kind between concept2 and the attribute that
yield higher frequency counts. For instance
in the example below, ‘garlic’ and ‘wings’
have higher frequency, not because garlic has
wings, but because they co-occur in phrases
like “garlic chicken wings”.
(pheasant, garlic, wings, 1), cntW1W3: 500,
cntW2W3: 11136

• Either of the two concepts has no n-gram co-
occurrence with the given attribute leading to
missing information.
(owl, buzzard, eyes, 0), cntW1W3: 10088,
cntW2W3: 0

6 Conclusion

In this paper we have presented our system for de-
tecting discriminative features using distributional
semantics. We have shown that, without resort

to human knowledge, a great deal of encyclope-
dic knowledge can be captured from unstructured
data. We also conducted a detailed error analysis
which shows the strengths and weaknesses of the
system.

In its quest to approximate the distance be-
tween words with similar contexts, the cosine dis-
tance becomes oblivious to the internal intrinsic
relationship between words and their immediate
neighbors, and this is why many relations that are
induced from co-occurrence counts are not cap-
tured by cosine distance.

While n-gram counts from raw data can present
a great wealth for mining for lexical information
and inducing semantic knowledge, co-occurrence
counts can suffer from considerable constraints
when two or more adjacent words have different
scope of predication or qualification. For exam-
ple, while “wood spoon” has a high frequency due
to the semantic relation of ‘made-of’, “wood pep-
per” has an even higher frequency count, not due
to any semantic relationship, but because ‘wood’
is scoped to a subsequent word, “wood pepper
mill”. If syntactic information related to the head
of noun compounds and scope of modification,
more meaningful assumptions can be made.
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